题名:
|
隐私保护机器学习 yin si bao hu ji qi xue xi / 王力, 张秉晟, 陈超超著 , |
ISBN:
|
978-7-121-41207-3 价格: CNY88.00 |
语种:
|
chi |
载体形态:
|
xxiii, 277页 图 24cm |
出版发行:
|
出版地: 北京 出版社: 电子工业出版社 出版日期: 2021 |
内容提要:
|
随着社会数字化和信息化的程度越来越高, 数据资源作为一种互联网时代的新能源所表现出的数据流动价值越来越得到人们的重视。在大数据背景下, 机器学习技术正被广泛应用在各个领域, 充分发挥数据的价值。与此同时, 在对数据隐私的担忧声中, 政府开始行动制定数据使用合规法案。传统的机器学习方法受到了制约, 大量的数据因为需要依法保护而无法被联合在一起进行建模, 隐私保护机器学习的概念应运而生。本书将介绍隐私保护机器学习的原理、方法和应用, 主要介绍机器学习和隐私保护技术的基础知识, 并讲解隐私保护机器学习的应用, 包括隐私求交、安全多方计算、线性模型、树模型、神经网络。同时本书还介绍隐私保护机器学习的具体应用场景, 深入讲解其技术原理。 |
主题词:
|
数据处理 安全技术 |
中图分类法:
|
TP274 版次: 5 |
主要责任者:
|
王力 wang li 著 |
主要责任者:
|
张秉晟 zhang bing sheng 著 |
主要责任者:
|
陈超超 chen chao chao 著 |
责任者附注:
|
王力, 蚂蚁集团隐私计算算法总监。张秉晟, 浙江大学网络空间安全学院研究员, 博导。陈超超, 蚂蚁集团共享智能部的高级算法专家。 |